skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "RIEKEL, Christian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. While spider silk threads mainly consist of a core of partially crystalline silk proteins, it has been found that they also exhibit a very thin skin layer of distinct structure and a coating rich in lipids and glycoproteins. These outer layers are poorly researched, but can be assumed to be a major player governing the interaction of cells with spider silk threads, as observed in cell culture. Here we propose SAXS/WAXS mapping with ultra-high spatial resolution to examine the surface layer of thin cryo-cut sections of different spider silks that have shown different cell guiding behavior in cell culture. This approach allows studying surface layers from two orientations (along and normal to fiber axis) and the cryo-approach minimizes morphological changes. In a recent nano-SAXS/WAXS beamtime at ID13, we obtained very promising data, however with whole threads and with lower resolution. This follow-up work aims to characterize the surface layer systematically. 
    more » « less
  2. Spider silk (SPSI) is a promising candidate for use as a filler material in nerve guidance conduits (NGCs), facilitating peripheral nerve regeneration by providing a scaffold for Schwann cells (SCs) and axonal growth. However, the specific properties of SPSI that contribute to its regenerative success remain unclear. In this study, the egg sac silk of Trichonephila (T.) inaurata is investigated, which contains two distinct fiber types: tubuliform (TU) and major ampullate (MA) silk. These fibers serve as models to derive material parameters governing SC migration on natural silk substrates, since they are produced by the same spider, yet exhibiting distinct composition and morphology. In this paper, detailed characterization of the fibers’ material properties and in vitro evaluation of their SC-guiding performance were conducted. Live cell imaging revealed significantly enhanced SC mobility and directionality on TU silk compared to MA silk, which is remarkable, given the lack of studies on TU silk for nerve regeneration. Our results suggest that the distinct morphological and material properties of these fibers are critical to their nerve-guiding potential. These insights contribute to the optimization of NGC filler materials by identifying key parameters essential for effective nerve regeneration. 
    more » « less
    Free, publicly-accessible full text available February 17, 2026